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ABSTRACT. The multiplicative functional for the heat equation on k-forms with abso-
lute boundary condition is constructed and a probabilistic representation of the solution
is obtained. As an application, we prove a heat kernel domination that was previously
discussed by Donnelly and Li, and Shigekawa.

1. INTRODUCTION

Throughout this paper, we assume that M is an n-dimensional compact Riemannian
manifold with boundary ∂M . Denote by � the Hodge-de Rham Laplacian. Let θ0 be a
differential k-form on M and consider the following initial boundary valued problem on
M : 

∂θ
∂t

= 1
2
�θ,

θ(·, 0) = θ0,
θnorm = 0, (dθ)norm = 0.

(1.1)

The well known Weitzenböck formula shows that the difference between the Hodge-de
Rham Laplacian and the covariant Laplacian for the differential forms on a Riemannian
manifold M is a linear transformation at each x ∈M . So the heat equation for differential
forms is naturally associated with a matrix-valued Feynman-kac multiplicative functional
determined by the curvature tensor. The boundary condition

θnorm = 0, and (dθ)norm = 0,

is called the absolute boundary condition. The significance of the absolute boundary con-
dition stems from the well-know work [7]. Since it is Dirichlet in the normal direction and
Neumann in the tangential directions, the associated multiplicative functional is discon-
tinuous and therefore difficult to handle. Ikeda and Watanabe [5, 6] have dealt with this
situation by using an excursion theory. Later, Hsu [3] constructed the discontinuous mul-
tiplicative functional Mt for 1-forms by an approximating argument inspired by Ariault
[1]. The solution to equation (1.1) for 1-forms thus can be represented in terms of Mt as

θ(x, t) = u0Ex{Mtu
−1
t θ0(xt)},(1.2)

Key words and phrases. heat kernel domination, gradient inequality, absolute boundary condition,
Hodge-de Rham Laplacian, Riemannian manifold with boundary.
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where {xt} is a reflecting Brownian motion on M , and {ut} its horizontal lift process to
the orthonormal fame bundle O(M) starting from a frame u0 : Rn → TxM , which we
will use to identify TxM with Rn. As a direct consequence, a gradient estimate

|∇Ptf(x)| ≤ Ex
{
|∇f(xt)| exp

[
− 1

2

∫ t

0

κ(xs)ds−
∫ t

0

h(xs)dls

]}
was obtained. Here l is the boundary local time for {xt}, κ(x) the lower bound of the
Ricci curvature at x ∈ M , and h(x) the lower bound of the second fundamental form at
x ∈ ∂M .

The present paper extends Hsu’s work [3] to multiplicative functional on the full exte-
rior algebra ∧∗M . We lift the absolute boundary condition onto the frame bundle O(M)
and clarify the action of second fundamental form on k-forms in the absolute boundary
condition. Then the multiplicative functionalMt for the heat equation (1.1) is constructed.
With this Mt, the representation (1.2) still holds for k-forms, and we have the following
estimate

|Mt|2,2 ≤ exp

[
1

2

∫ t

0

λ(xs)ds−
∫ t

0

σk(xs)dls

]
.(1.3)

Here

λ(x) = sup
θ∈∧kxM,〈θ,θ〉=1

〈D∗R(x)θ, θ〉(1.4)

with D∗Rθ the curvature tensor acting on θ as the Lie algebra action, and σk(x), k =
1, 2, ..., n being combinations of eigenvalues of second fundamental form at x ∈ ∂M ,
which we will specify later. It follows immediately with (1.2) and (1.3) our generalized
gradient inequality

|dPtθ(x)| ≤ Ex
{∣∣dθ∣∣ exp

[
1

2

∫ t

0

λ(xs)ds−
∫ t

0

σk+1(xs)dls

]}
.

Let λ̄ = supx∈∂M λ(x), we also prove the heat kernel domination

|pkM(t, x, y)|2,2 ≤ e
1
2
λ̄tpM(t, x, y)Ex{e−

∫ t
0 σk(xs)dls|xt = y}.

Here pk(t, x, y) is the heat kernel on k-forms with absolute boundary condition and pM(t, x, y)
is the heat kernel on functions with Neumann boundary condition. Note that when σk ≥ 0
the above inequality reduces to

|pkM(t, x, y)|2,2 ≤ e
1
2
λ̄tpM(t, x, y).(1.5)

This special case was proved by Donnelly-Li [2]. We remark that the heat kernel domina-
tion was also discussed in Shigekawa [8] by an approach using theory of Dirichlet form.
Inequality (1.5) was obtained as an example for 1-forms in [8].

The rest of the paper is organized as follows. In Section 2, we briefly recall the
Weitzenböck formula and corresponding actions on differential forms. In Section 3, we
give an explicit expression for the absolute boundary condition. The reflecting Brownian
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motion with Neumann boundary condition is briefly introduced in Section 4. Then, we fo-
cus on the construction of the multiplicative functional on k-forms for heat equation (1.1)
in Section 5. Finally we provide some applications in Section 6.

2. WEITZENBÖCK FORMULA ON ORTHONORMAL FRAME BUNDLE

For our purpose, it is more convenient to lift equation (1.1) onto the orthonormal frame
bundle O(M). In this section, we give a brief review of Weitzenböck formula and it’s lift
onto the frame bundle O(M). More detailed discussion can be found in [4].

Let 4 = trace∇2 be the Laplace-Beltrami operator and � = −(dd∗ + d∗d) be the
Hodge-de Rham Laplacian. They are related by the Weitzenböck formula

� = 4+D∗R.

We first explain the action of the curvature tensor R on differential forms in the above
formula. Suppose that T : TxM → TxM is a linear transformation and T ∗ : ∧1

xM →
∧1
xM its dual. The linear map T ∗ on ∧1

xM can be extended to the full exterior algebra
∧∗xM =

∑n
k=0

⊕
∧kxM as a Lie algebra action (derivation) D∗T by

D∗T (θ1 ∧ θ2) = D∗Tθ1 ∧ θ2 + θ1 ∧D∗Tθ2.

Let End(TxM ) be the space of linear maps from TxM to itself. We define a bilinear
map

D∗ : End(TxM)⊕ End(TxM)→ End(∧∗xM)

by
D∗(T1 ⊕ T2) = D∗T1 ◦D∗T2.

From elementary algebra we know that End(TxM )=(TxM)∗ ⊕ TxM . By the definition
of the curvature tensor R and using the isometry (TxM)∗ → TxM induced by the inner
product, we can identify R as an element in End(TxM)⊕End(TxM). Thus by the above
definition, we obtain a linear map

D∗R : ∧∗xM → ∧∗xM,

which, by the Weiztenböck formula, is the difference between the covariance Laplacian
and the Hodge-de Rham Laplacian.

A frame u ∈ O(M) is an isometry u : Rn → TxM , where x = πu and π : O(M)→M
is the canonical projection. A curve {ut} in O(M) is horizontal if, for any e ∈ Rn, the
vector field {ute} is parallel along the curve {πut}. A vector on O(M) is horizontal if it is
the tangent vector of a horizontal curve. For each v ∈ TxM and a frame u ∈ O(M) such
that πu = x, there is a unique horizontal vector V , called the horizontal lift of v, such that
π∗V = v. For each i = 1, ..., n, let Hi(u) be the horizontal lift of uei ∈ TxM . Each Hi is
a horizontal vector field on O(M), and H1, ..., Hn are called the fundamental horizontal
vector fields on O(M).

On the orthonormal frame bundle O(M), a k-form θ is lifted to its scalarization θ̃ de-
fined by

θ̃(u) = u−1θ(πu).
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Here a frame u : Rn → TxM is assumed to be extended canonically to an isometry u :
∧∗Rn → ∧∗xM . By definition, θ̃ is a function on O(M) taking values in the vector space
∧kRn and isO(n)-invariant in the sense that θ̃(gu) = gθ̃(u) for g ∈ O(n). We remark that
through the isometry u : ∧∗Rn → ∧∗xM , a linear transformation T (x) : ∧∗xM → ∧∗xM
can also be lifted onto O(M) as a linear map

T̃ (u) = u−1H(πu)u : ∧∗Rn → ∧∗Rn.

To simplify the notation, whenever feasible, we still use T for the more precise T̃ through-
out our discussion.

Bochner’s horizontal Laplacian on the frame bundle O(M) is defined to be 4O(M) =∑n
i=1H

2
i . It is the lift of the Laplace-Beltrami operator4 in the sense that

4O(M)θ̃(u) = 4̃θ(x), πu = x.

To write the Weitzenbök formula on the frame bundle, we lift D∗R : ∧∗xM → ∧∗xM to
the frame bundle O(M) and let

�O(M) = 4O(M) +D∗Ω.(2.1)

Then �O(M) is a lift of the Hodged-de Rham Laplacian in the sense that �O(M)θ̃(u) =

�̃θ(x), where πu = x. The identity (2.1) is the lifted Weiztenböck formula on the or-
thonormal frame bundle O(M).

3. ABSOLUTE BOUNDARY CONDITION

The purpose of this section is to give an explicit expression for the absolute boundary
condition on forms. Once the boundary condition is identified, the multiplicative func-
tional Mt could be constructed accordingly.

Fix an x ∈ ∂M , we let n(x) be the inward unit normal vector at x. For a k-form θ, we
may decompose θ into its tangential and normal component, θ = θtan + n(x) ∧ β, with
θtan ∈ ∧kx∂M and β ∈ ∧k−1

x ∂M . We denote θnorm = θ − θtan. The form θ is said to
satisfy the absolute boundary condition if

θnorm = 0 and (dθ)norm = 0.

Let Q(x) : ∧∗xM → ∧∗xM be the orthogonal projection to the tangent component, i.e.,
Q(x)θ = θtan. We extend Q (indeed Q̃) to a smooth, projection linear map on the whole
bundle O(M) and let P (x) = I −Q(x). P (x) is the orthogonal projection to the normal
component.

Recall that the second fundamental form H : Tx∂M ⊗R Tx∂M → R is defined by

H(x)(X, Y ) = 〈∇XY, n(x)〉, X, Y ∈ Tx∂M.

By duality, H(x) can also be regarded as a linear map H(x) : Tx∂M → Tx∂M via the
relation

〈HX,Y 〉 = H〈X, Y 〉.
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It is clear that H(x) is symmetric on Tx∂M . We extend H to the whole tangent space
TxM by letting H(x)n(x) = 0, and denote the dual of H still by H : ∧1

xM → ∧1
xM.

The following lemma gives an explicit expression for the absolute boundary condition
on differential forms. Let

∂O(M) = {u ∈ O(M) : πu ∈ ∂M}.

Lemma 3.1. For any k-form θ on M , it satisfies the absolute boundary condition if and
only if

Q[N −H]θ̃ − P θ̃ = 0 on ∂O(M).

Note that θ̃ is the scalarization of θ, and N is the horizontal lift of n along the boundary
∂M .

Before we proceed to the proof of the above lemma, let us explain the various actions
that appear in the above expression. Recall that N is a vector field on ∂O(M) and θ̃ is a
∧kRn-valued function on O(M), thusNθ̃ is naturally understood as the vector field acting
on functions. The actionHθ̃ is more important. We know thatH is a linear transformation
on ∧1

xM for x ∈ ∂M . For θ ∈ ∧kxM , the action Hθ is the extension of H to ∧∗M as the
Lie-algebra action(derivation) specified in section 2. More specifically,

H(θ1 ∧ ... ∧ θk) =
k∑
i=1

θ1 ∧ ... ∧Hθi ∧ ... ∧ θk,

where θi are 1-forms. Now Hθ̃ is simply H̃θ̃.

Proof. It is enough to show that

θnorm = 0⇔ P θ̃ = 0

and that, if θnorm = 0, then

(dθ)norm = 0⇔ Q[N −H]θ̃ = 0.

Fix any x ∈ ∂M . Let {Ei} be a frame in a neighborhood of x with E1 = n, the inward
pointing unit normal vector field along the boundary and all other Ei’s being tangent to
the boundary. Further more we can chose the frame such that{Ei} are orthonormal at x
and ∇E1Ei = 0 for all i = 2, ..., n in a small neighborhood of x in M . To illustrate, we
only prove the case when θ is a 2-form. The proof for k-forms will be clear, and actually
identical when we understand what happens to 2-forms.

Let θ = θijE
i ∧ Ej be any 2-form, where {Ei} is the dual of {Ei}. It’s easy to see that

θnorm = 0 is equivalent to θ1j = θi1 = 0 for all i, j, i.e., P θ̃ = 0.
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Now we assume P θ̃ = 0 (i.e., θ1j = θi1 = 0 for all i, j). To see what (dθ)norm means,
we compute

dθ = Ek ∧∇Ek(θijE
i ∧ Ej)

= EkθijE
k ∧ Ei ∧ Ej + θijE

k ∧∇Ek(E
i ∧ Ej)

= I1 + I2.

Apparently

(I1)norm = E1θijE
1 ∧ Ei ∧ Ej,(3.1)

since θ1j = θi1 = 0. On the other hand, we have

I2 = θijE
k ∧ (∇EkE

i ∧ Ej) + θijE
k ∧ (Ei ∧∇EkE

j)

= J1 + J2.

Since at x,
(∇EkE

i)(El) = −Ei(∇EkEl) = −〈∇EkEl, Ei〉
we have

∇EkE
i = −〈∇EkEl, Ei〉El,

hence at x,
J1 = −〈∇EkEl, Ei〉θijEk ∧ El ∧ Ej.

Keep in mind that θ1j = θi1 = 0 and ∇E1Ei = 0 for i 6= 1, we obtain

(J1)norm = −〈∇EkE1, Ei〉θijEk ∧ E1 ∧ Ej.

Re-indexing it we have

(J1)norm = 〈∇EiE1, Ek〉θkjE1 ∧ Ei ∧ Ej.(3.2)

Similarly

(J2)norm = 〈∇EjE1, Ek〉θikE1 ∧ Ei ∧ Ej.(3.3)

Note here that −〈∇EiE1, Ej〉 is the matrix of second fundamental form on 1-forms. So
we conclude, by (3.1), (3.2) and (3.3), that when θnorm = 0, (dθ)norm = 0 is equivalent to

(E1θij + 〈∇EiE1, Ek〉θkj + 〈∇EjE1, Ek〉θik)E1 ∧ Ei ∧ Ej = 0,

i.e., Q(N −H)θ̃ = 0. The proof is completed. �

Remark 3.2. Lemma 3.1 gives us a clear picture of the role the second fundamental form
plays in the absolute boundary condition. Together with the discussion in Section 2, the
initial boundary valued problem( 1.1) can be lifted onto O(M) as

∂θ̃
∂t

= 1
2
[4O(M) +D∗Ω]θ̃,

θ̃(·, 0) = θ̃0,

Q[N −H]θ̃ − P θ̃ = 0.

(3.4)
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Finally, we state an easy corollary of Lemma 3.1, which will be needed later. For each
x ∈ ∂M , by the way we extended H to a linear map on TxM , γ1 = 0 is an eigenvalue of
H associated to the eigenvector n(x). Suppose that γ2(x), ..., γn(x) are other eigenvalues
ofH on Tx∂M . We may define a real-valued function σk on ∂M by (see Donnelly-Li [2]),

σk(x) = min
I

(
γi1(x) + γi2(x) + ...+ γik(x)

)
,(3.5)

where I = {i1, ..., ik} is a multi-index such that is 6= il if s 6= l; s, l = 2, 3, ..., k. Ap-
parently, σk(x) is a combination of eigenvalues of the second fundamental form H on
Tx∂M .

Corollary 3.3. For any x ∈ ∂M we have

σk(x) = inf
θ∈∧k∂M,|θ|=1

〈H(x)θ, θ〉,

where 〈·, ·〉 is the canonical inner product on forms and |θ|2 := 〈θ, θ〉.

Proof. Fix x ∈ ∂M , let {E2, ..., En} be a the set of orthonormal eigenvectors correspond-
ing to the eigenvalues {γ2, ..., γn}, and {Ei} its dual. We first prove for any k-form θ with
|θ| = 1 we have

σk(x) ≤ 〈H(x)θ, θ〉.(3.6)

Let θ = θi1,...,ikE
i1 ∧ ...∧Eik with |θ|2 =

∑
θ2
i1,...,ik

= 1. By the previous lemma we have

H(x)θ = (γi1 + ...+ γik)θi1,...,ikE
i1 ∧ ... ∧ Eik .

Hence

〈H(x)θ, θ〉 =
∑

(γi1 + ...+ γik)θ
2
i1,...,ik

≥ σk(x)
∑

θ2
i1,...,ik

= σk(x),

which proves (3.6). On the other hand, it’s not hard to see that the equality can be achieved.
The proof is completed.

�

4. REFLECTING BROWNIAN MOTION

Let ω = {ωt} be a Euclidean Brownian motion. Recall the definition of N in the
previous section, and consider the following stochastic differential equation on the fame
bundle O(M)

dut =
n∑
i=1

Hi(ut) ◦ dωit +N(ut)dlt.(4.1)

The solution {ut} is a horizontal reflecting Brownian motion starting at an initial frame u0.
Let xt = πut. Then {xt} is a reflecting Brownian motion on M , with its transition density
the Neumann heat kernel pM(t, x, y). The nondecreasing process lt is the boundary local
time, which increases only when xt ∈ ∂M .
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Now suppose that we have two smooth functions

R : O(M)→ End(∧∗Rn), A : ∂O(M)→ End(∧∗Rn).

Define the End(∧∗Rn)-valued, continuous multiplicative functional {Mt} by

dMt +Mt{−
1

2
R(ut)dt+ A(ut)dlt} = 0, M0 = I.

When Mt takes values in End(∧kRn), it is also helpful to think {Mt} as a matrix-valued
process.

Lemma 4.1. Let L = ∂
∂s
− 1

2
[4O(M) +R] and F : O(M)×R+ → ∧∗Rn be a solution to{

LF = 0 u ∈ O(M)/∂O(M)
(N − A)F = 0 u ∈ ∂O(M),

(4.2)

we have

MtF (ut, T − t) =F (u0, T ) +

∫ t

0

〈Ms∇HF (us, T − s), dω〉,

where∇HF = {H1F,H2F, ..., HnF} is the horizontal gradient of a function F on O(M).
In this case, we say that {Mt} is the multiplicative functional associated with the operator
L with the boundary condition (N − A)F = 0.

Proof. Apply Itô’s formula to MtF (ut, T − t). �

5. DISCONTINUOUS MULTIPLICATIVE FUNCTIONAL

We have shown that the heat equation on k-forms with absolute boundary condition is
equivalent to the following heat equation on O(n)-invariant functions F : O(M)×R+ →
∧kRn : 

∂F
∂t

= 1
2
[4O(M) +D∗Ω]F,

F (·, 0) = f,
QNF − (H + P )F = 0.

(5.1)

Compared with the boundary condition in (4.2), QN − (H + P ) is degenerate, because
Q is a projection (hence is not of full rank as a linear map). Thus Lemma 4.1 cannot be
applied directly. In this section we follow closely the ideas of Hsu [3] to construct the
End(∧kRn)-valued multiplicative functional associated to (5.1).

Observe that the boundary condition in (5.1) consists of two orthogonal components:

Q[N −H]F = 0, PF = 0.(5.2)

We replace PF above by (−εPN + P )F and rewrite the boundary condition as[
N −H − P

ε

]
F = 0.
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According to Lemma 4.1, the multiplicative functional for this approximate boundary
condition is given by

dM ε
t +M ε

t

{
−1

2
D∗Ω(ut)dt+

[
1

ε
P (ut) +H(ut)

]
dlt

}
= 0.(5.3)

In the rest of this section, we show that {M ε
t } converges to a discontinuous multiplicative

functional {Mt} which turns out to be the right one for the boundary condition (5.2).
Recall the definition of σk in (3.5) and let

λ(x) = sup
θ∈∧kxM,〈θ,θ〉=1

〈D∗R(x)θ, θ〉.(5.4)

When k = 1, it is well known that D∗R(x) = −Ric(x), where Ric(x) is the Ricci
transformation at x (see Hsu[4], for example), hence λ(x) is the negative lower bound of
the Ricci transform at x.

Proposition 5.1. Let | · |2,2 be the norm of a linear transform on ∧kRn with the standard
Euclidean norm. Then for all positive ε such that ε−1 ≥ minx∈∂M σk(x), we have

|M ε
t |2,2 ≤ exp

[
1

2

∫ t

0

λ(xs)ds−
∫ t

0

σk(xs)dls

]
.

Proof. We only outline the proof here, the technical details being mostly the same as
that in [3]. Instead of considering M ε

t , we prove for the adjoint (transpose, if we think
M ε

t as a matrix-valued process) of M ε
t , namely (M ε

t )T . Let f(t) = |(M ε
t )T θ̃|2 =

〈(M ε
t )T θ̃, (M ε

t )T θ̃〉. Differentiate f with respect to t. By (5.3), our assumption on ε and
standard estimate we have

df(t) ≤ f(t){λ(xt)dt− 2σk(xt)dlt},
which gives us the desired result. �

The integrability of M ε
t is given by the following lemma.

Lemma 5.2. For any positive constant C, there is a constant C1 depending on C but
independent of x such that

ExeClt ≤ C1e
C1t.

Proof. This can be obtained by a heat kernel upper bound and the strong Markov property
of reflecting Brownian motion. See [3, Lemma 3.2] for a detailed proof. �

If we formally let ε ↓ 0 in (5.3), one can see that we should have M ε
t P (ut)→ 0 for all

t such that ut ∈ ∂O(M). The next lemma shows it is indeed the case. Define

T∂M = inf{s ≥ 0 : xs ∈ ∂M} = the first hitting time of ∂M.

A point t ≥ T∂M such that lt − lt−δ > 0 for all positive δ ≤ t is called a left support point
of the boundary local time l.

Proposition 5.3. When ε ↓ 0, M ε
t P (ut)→ 0 for all left support points t ≥ T∂M .
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Proof. The proof is almost identical to the one for 1-forms in [3]. For the convenience of
the reader, we still provide some details here. We drop the superscript ε for simplicity. Let
θ ∈ ∧kM be a k-form and define

f(s) = 〈MT
s θ̃, P (ut)M

T
s θ̃〉 = 〈θ̃,MsP (ut)M

T
s θ̃〉.

Differentiating f with respect to s, by (5.3) we have df(s) = −2
ε
f(s) + dNs, which gives

us

f(t) = e−2(lt−lt−δ)/εf(t− δ) +

∫ t

t−δ
e−2(lt−ls)/εdNs.(5.5)

Here dNs is equal to
1

ε
〈θ̃,Ms(2P (ut)− P (us)P (ut)− P (ut)P (us))M

T
s θ̃〉dls

+ 〈θ̃, 1

2
Ms(D

∗Ω(us)P (ut) + P (ut)(D
∗Ω(us))

T )MT
s θ̃〉ds

− 〈θ̃,Ms(H(us)P (ut) + P (ut)H(us))M
T
s θ̃〉dls.

In the above we used the fact that HT = H and P T = P . By continuity of P and
Proposition 5.1, for any η > 0 there exists a δ > 0 such that, for all s ∈ [t − δ, t] with
xs ∈ ∂M ,

〈θ̃,Ms(2P (ut)− P (us)P (ut)− P (ut)P (us))M
T
s θ̃〉 ≤ η|θ̃|2.

Also by Proposition 5.1, there is a constant C such that, for all s ∈ [t−δ, t] with xs ∈ ∂M ,

〈θ̃, 1

2
Ms(D

∗Ω(us)P (ut) + P (ut)(D
∗Ω(us))

T )MT
s θ̃〉 ≤ C|θ̃|2

and
〈θ̃,Ms(H(us)P (ut) + P (ut)H(us))M

T
s θ̃〉 ≤ C|θ̃|2.

It follows that
|dNs| ≤ |θ̃|2[(

η

ε
+ C)dls + Cds].

Substituting in (5.5), we obtain

|MtP (ut)|22,2 ≤e−2(lt−lt−δ)/ε|Mt−δ|22,2 +
η + Cε

2
{1− e−2(lt−lt−δ)/ε}(5.6)

+ C

∫ t

t−δ
e−2(lt−lt−δ)/εds.

Because t is a left support point, lt− ls > 0 for all s < t. We first let ε ↓ 0 and then η → 0
in (5.6), we have MtP (ut)→ 0. �

We now come to the main result of the section, namely, the limit limε→0M
ε
t = Mt

exists. From the definition of M ε
t , if t is such that xt 6∈ ∂M we have

dM ε
t −

1

2
M ε

tD
∗Ω(ut)dt = 0.
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Let {e(s, t), t ≥ s} be the solution of

d

dt
e(s, t)− 1

2
e(s, t)D∗Ω(ut) = 0, e(s, s) = I.

Then, for t ≥ T∂M we have M ε
t = M ε

t∗e(t∗, t). Here for each t ≥ T∂M , t∗ is defined to be
the last exit time from ∂M , more precisely, t∗ = sup{s ≤ t : xs ∈ ∂M}.

Define
Y ε
t = M ε

t P (ut), Zε
t = M ε

tQ(ut).

Since when t ≤ T∂M we have M ε
t = e(0, t); and when t ≥ T∂M we have

M ε
t = M ε

t∗e(t∗, t) = {Zε
t∗ + Y ε

t∗}e(t∗, t),

we can write

Y ε
t = I{t≤T∂M}M

ε
t P (ut) + I{t>T∂M}M

ε
t P (ut)(5.7)

= I{t≤T∂M}e(0, t)P (ut) + I{t>T∂M}Z
ε
t∗e(t∗, t)P (ut) + αεt ,

where

αεt = I{t>T∂M}Y
ε
t∗e(t∗, t)P (ut).(5.8)

If t > T∂M , then t∗ is a left support point of l. By Propositon 5.3, Y ε
t∗ → 0 as ε ↓ 0; hence

αεt → 0. On the other hand, by equation (5.3) for M ε
t we have

Zε
t = Q(u0) +

∫ t

0

dM ε
sQ(us) +

∫ t

0

M ε
sdQ(us)(5.9)

= Q(u0) +

∫ t

0

[Y ε
s + Zε

s ]dχs,

where

dχs = −H(us)dls +
1

2
D∗Ω(us)Q(us)ds+ dQ(us).

Formally letting ε ↓ 0 in (5.7) and (5.9) above, we expect that the limit (Yt, Zt) satisfies
following equations:

{
Yt = I{t≤T∂M}e(0, t)P (ut) + I{t>T∂M}Zt∗e(t∗, t)P (ut),

Zt = Q(u0) +
∫ t

0
(Ys + Zs)dχs.

(5.10)

Substituting the first equation into the second, we obtain an equation for Z itself in the
form

Zt = Q(u0) +

∫ t

0

Φ(Z)sdχs,(5.11)

where
Φ(Z)s = Zs + I{s≤T∂M}e(0, s)P (us) + I{s>T∂M}Zs∗e(s∗, s)P (us).
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Now we can state the main result in this section. For an End(∧kRn)-valued stochastic
process M = {Mt}, we define

|M |t = sup
0≤s≤t

|Ms|2,2.

Theorem 5.4. We have

(1) Equation (5.11) has a unique solution Z. Define Y by the first equation in (5.10)
and letMt = Yt+Zt. Then {Mt} is right continuous with left limits andMtP (ut) =
0 whenever xt ∈ ∂M .

(2) For each fixed t,

E|Zε − Z|t → 0, E|Y ε
t − Yt|22,2 → 0, as ε ↓ 0.

Hence E|M ε
t −Mt|22,2 → 0 as ε ↓ 0.

Proof. The proof of the stated results follow the lines of proofs of Theorem 3.4 and The-
orem 3.5 of [3]. �

Corollary 5.5. For the limit process {Mt} we have

|Mt|2,2 ≤ exp

[
1

2

∫ t

0

λ(xs)ds−
∫ t

0

σk(xs)dls

]
Proof. Letting ε ↓ 0 in Lemma 5.1, the result follows immediately. �

Corollary 5.6. The End(∧kRn)-valued process Mt is the multiplicative functional associ-
ated to equation (5.1).

Proof. Since F is a solution to (5.1), from Lemma 4.1 with L = ∂
∂s
− 1

2
[4O(M) + D∗Ω],

we have

M ε
t F (ut, T − t) =F (u0, T ) +

∫ t

0

〈M ε
s∇HF (us, T − s), dωs〉

+

∫ t

0

M ε
s

[
N − 1

ε
P −H

]
F (us, T − s)dls.

The terms involving 1/ε vanish because, by the assumption on F , P (us)F (us, T − s) = 0
for us ∈ ∂O(M). Using the previous theorem, we let ε ↓ 0 and note that Q[N −H]F =
[N − H]F and Ms = MQ(us) when us ∈ ∂O(M) (by Theorem 5.4), we obtain the
desired equality. �

6. HEART KERNEL REPRESENTATION AND APPLICATIONS

With the multiplicative functional Mt constructed in the previous section, we have the
following probabilistic representation of the solution to (1.1).
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Theorem 6.1. Let θ ∈ ∧kM be the solution of the initial boundary value problem (1.1).
Then

θ̃(u, t) = Eu{Mtθ̃0(ut)}.(6.1)

Hence θ is given by

θ(x, t) = uEx{Mtu
−1
t θ0(xt)}(6.2)

for any u ∈ O(M) such that πu = x.

Proof. By Corollary 5.6, {Msθ̃(us, t − s), 0 ≤ s ≤ t} is a martingale. Equating the
expected values at s = 0 and s = t gives us (6.1). The second equality is a restatement of
the first one on the manifold M . �

There are several application with the above representation. We will examine two of
them below. Let

p∗M(t, x, y) : ∧∗yM → ∧∗xM
be the heat kernel on differential forms with absolute boundary condition. Then by the
above theorem we have

uEx{Mtu
−1
t θ(xt)} =

∫
M

p∗M(t, x, y)θ(y)dy, πu = x.(6.3)

On the other hand we have

uEx{Mtu
−1
t θ(xt)} = uExEx{Mtu

−1
t θ(xt)|xt = y}(6.4)

=

∫
M

pM(t, x, y)uEx{Mtu
−1
t θ(xt)|xt = y}dy.

Here pM(t, x, y) is the heat kernel on functions with Neumann boundary condition, i.e.,
the transition probability of {xt}. From (6.3) and (6.4) the heat kernel on differential
forms can be written as

p∗M(t, x, y) = pM(t, x, y)uEx{Mtu
−1
t |xt = y},(6.5)

Recall that

σk = min
I
γi1 + γi2 + ...+ γik ,

where γ2, ..., γn are eigenvalues of the sectond fundamental form of ∂M , and I = {i1, ..., ik}
is a multi-index with is = 2, 3, ..., k and is = il if s 6= l; and that

λ(x) = sup
θ∈∧kxM,〈θ,θ〉=1

〈D∗R(x)θ, θ〉.(6.6)

We have the following heat kernel domination.
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Theorem 6.2. Let pkM(t, x, y) be the heat kernel on k-forms. Define

σ̄k = inf
x∈∂M

σk and λ̄ = sup
x∈∂M

λ(x).

We have
|pkM(t, x, y)|2,2 ≤ e

1
2
λ̄t−σ̄kltpM(t, x, y),

where lt is the Brownian motion boundary local time.

Proof. This is a direct application of representation (6.5) and Proposition 5.1. �

Remark 6.3. When σ̄k ≥ 0 then we have

|pkM(t, x, y)|2,2 ≤ e
1
2
λ̄tpM(t, x, y)

This special case was proved by Donnelly and Li [2], and Shigekawa [8].

For θ ∈ ∧kM , let Ptθ(x) =
∫
M
p∗(t, x, y)θ(y)dy. Then we have the following general-

ized gradient inequality.

Theorem 6.4. Keep all the notation above, we have

|dPtθ(x)| ≤ Ex
{∣∣dθ∣∣ exp

[1
2

∫ t

0

λ(xs)ds−
∫ t

0

σk+1(xs)dls
]}
.

Proof. Let η(x, t) = dPtθ(x). Then η is a k + 1-form satisfying the absolute boundary
condition, since dη = d(dPtθ) = 0 and (η)norm = (dPtθ)norm = 0. On the other hand,
because d commute with the Hodge-de Rham Laplacian, we have

∂η

∂t
= d(

∂Ptθ

∂t
) =

1

2
d�Ptθ =

1

2
� dPtθ =

1

2
�η.

So θ is a solution to the heat equation (1.1). The rest of the proof is thus again an easy
application of (6.2) and Proposition 5.1. �

Remark 6.5. When θ is a 0-form, i.e., a function on M , denoted as f . Then the above
inequality reduces to

|∇Ptf(x)| ≤ Ex
{
|∇f(xt)| exp

[1
2

∫ t

0

λ(xt)ds−
∫ t

0

σ1(xs)dls
]}
,

where σ1 is just the smallest eigenvalue of the second fundamental form at x and −λ is
the low bound of Ricci curvature( since in one dimension D∗R = −Ricci). This special
case was proved by Hsu [3].
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